
1

CS276

Lecture 15

Recap

� In the last lecture we introduced web 
search

� Paid placement

� SEO/Spam

Plan for today

� Wrap up spam

� Crawling

� Connectivity servers

Link-based ranking

� Most search engines use hyperlink 
information for ranking

� Basic idea: Peer endorsement
� Web page authors endorse their peers by 
linking to them

� Prototypical link-based ranking algorithm: 
PageRank
� Page is important if linked to (endorsed) by 
many other pages

� More so if other pages are themselves 
important

� More later …

Link spam

� Link spam: Inflating the rank of a page by creating 
nepotistic links to it

� From own sites: Link farms

� From partner sites: Link exchanges

� From unaffiliated sites (e.g. blogs, web forums, etc.)

� The more links, the better

� Generate links automatically

� Use scripts to post to blogs

� Synthesize entire web sites (often infinite number of 
pages)

� Synthesize many web sites (DNS spam; e.g. 
*.thrillingpage.info)

� The more important the linking page, the better

� Buy expired highly-ranked domains

� Post to high-quality blogs

Link farms and link exchanges



2

More spam techniques

� Cloaking
� Serve fake content to search engine spider

� DNS cloaking: Switch IP address. Impersonate

Is this a Search

Engine spider?

Y

N

SPAM

Real

Doc
Cloaking

Tutorial on

Cloaking & Stealth

Technology

Tutorial on

Cloaking & Stealth

Technology

More spam techniques

� Doorway pages
� Pages optimized for a single keyword that re-
direct to the real target page

� Robots
� Fake query stream – rank checking programs

� “Curve-fit” ranking programs of search engines

� Millions of submissions via Add-Url

Acid test

� Which SEO’s rank highly on the query seo?

� Web search engines have policies on SEO 
practices they tolerate/block

� See pointers in Resources

� Adversarial IR: the unending (technical) 
battle between SEO’s and web search 
engines

� See for instance 
http://airweb.cse.lehigh.edu/

Crawling

Crawling Issues

� How to crawl? 
� Quality: “Best” pages first

� Efficiency: Avoid duplication (or near duplication)

� Etiquette: Robots.txt, Server load concerns

� How much to crawl? How much to index?
� Coverage: How big is the Web? How much do we cover? 

� Relative Coverage: How much do competitors have?

� How often to crawl?
� Freshness: How much has changed? 

� How much has really changed? (why is this a different 
question?)



3

Basic crawler operation

� Begin with known “seed” pages

� Fetch and parse them

� Extract URLs they point to

� Place the extracted URLs on a queue

� Fetch each URL on the queue and repeat

Simple picture – complications

� Web crawling isn’t feasible with one machine
� All of the above steps distributed

� Even non-malicious pages pose challenges
� Latency/bandwidth to remote servers vary

� Robots.txt stipulations
� How “deep” should you crawl a site’s URL hierarchy?

� Site mirrors and duplicate pages

� Malicious pages
� Spam pages (Lecture 1, plus others to be 
discussed)

� Spider traps – incl dynamically generated

� Politeness – don’t hit a server too often

Robots.txt

� Protocol for giving spiders (“robots”) limited 
access to a website, originally from 1994

� www.robotstxt.org/wc/norobots.html

� Website announces its request on what 
can(not) be crawled

� For a URL, create a file URL/robots.txt

� This file specifies access restrictions

Robots.txt example

� No robot should visit any URL starting with 
"/yoursite/temp/", except the robot called 
“searchengine": 

User-agent: *

Disallow: /yoursite/temp/ 

User-agent: searchengine

Disallow:

Crawling and Corpus Construction

� Crawl order

� Distributed crawling

� Filtering duplicates

� Mirror detection 

Where do we spider next?

Web

URLs crawled
and parsed

URLs in queue



4

Crawl Order

� Want best pages first

� Potential quality measures:
� Final In-degree 

� Final Pagerank

What’s this?

Crawl Order

� Want best pages first

� Potential quality measures:
� Final In-degree 

� Final Pagerank

� Crawl heuristic:
� Breadth First Search (BFS)

� Partial Indegree

� Partial Pagerank

� Random walk

Measure of page
quality we’ll define
later in the course.

BFS & Spam (Worst case scenario)

BFS depth = 2

Normal avg outdegree = 10

100 URLs on the queue 

including a spam page.

Assume the spammer is able to 

generate dynamic pages with 

1000 outlinks

Start

Page
Start

Page

BFS depth = 3

2000 URLs on the queue

50% belong to the spammer

BFS depth = 4

1.01 million URLs on the queue

99% belong to the spammer

Where do we spider next?

Web

URLs crawled
and parsed

URLs in queue

Where do we spider next?

� Keep all spiders busy

� Keep spiders from treading on each others’
toes

� Avoid fetching duplicates repeatedly

� Respect politeness/robots.txt

� Avoid getting stuck in traps

� Detect/minimize spam

� Get the “best” pages

� What’s best?

� Best for answering search queries

Where do we spider next?

� Complex scheduling optimization problem, 
subject to all the constraints listed

� Plus operational constraints (e.g., keeping all 
machines load-balanced)

� Scientific study – limited to specific aspects

� Which ones?

� What do we measure?

� What are the compromises in distributed 
crawling?



5

Parallel Crawlers

� We follow the treatment of Cho and 
Garcia-Molina:
� http://www2002.org/CDROM/refereed/108/index.html

� Raises a number of questions in a clean 
setting, for further study

� Setting: we have a number of c-proc’s

� c-proc = crawling process

� Goal: we wish to spider the best pages with 
minimum overhead

� What do these mean?

Distributed model

� Crawlers may be running in diverse 
geographies – Europe, Asia, etc.

� Periodically update a master index

� Incremental update so this is “cheap”
� Compression, differential update etc.

� Focus on communication overhead during the 
crawl

� Also results in dispersed WAN load

c-proc’s crawling the web

URLs crawled
URLs in
queues

Which c-proc
gets this URL?

Communication: by URLs
passed between c-procs.

Measurements

� Overlap = (N-I)/I where

� N = number of pages fetched

� I = number of distinct pages fetched

� Coverage = I/U where

� U = Total number of web pages

� Quality = sum over downloaded pages of 
their importance

� Importance of a page = its in-degree

� Communication overhead =

� Number of URLs c-proc’s exchange

x

Crawler variations

� c-procs are independent

� Fetch pages oblivious to each other.

� Static assignment

� Web pages partitioned statically a priori, e.g., 
by URL hash … more to follow

� Dynamic assignment

� Central co-ordinator splits URLs among c-
procs

Static assignment

� Firewall mode: each c-proc only fetches URL 
within its partition – typically a domain

� inter-partition links not followed

� Crossover mode: c-proc may following inter-
partition links into another partition

� possibility of duplicate fetching

� Exchange mode: c-procs periodically 
exchange URLs they discover in another 
partition



6

Experiments

� 40M URL graph – Stanford Webbase

� Open Directory (dmoz.org) URLs as seeds

� Should be considered a small Web

Summary of findings

� Cho/Garcia-Molina detail many findings

� We will review some here, both qualitatively 
and quantitatively

� You are expected to understand the reason 
behind each qualitative finding in the paper

� You are not expected to remember quantities 
in their plots/studies

Firewall mode coverage

� The price of crawling in firewall mode

Crossover mode overlap

� Demanding coverage drives up overlap

Exchange mode communication

� Communication overhead sublinear

Per
downloaded
URL

Connectivity servers



7

Connectivity Server
[CS1: Bhar98b, CS2 & 3: Rand01]

� Support for fast queries on the web graph

� Which URLs point to a given URL?

� Which URLs does a given URL point to?

Stores mappings in memory from
� URL to outlinks, URL to inlinks

� Applications

� Crawl control

� Web graph analysis
� Connectivity, crawl optimization

� Link analysis
� More on this later

Most recent published work

� Boldi and Vigna
� http://www2004.org/proceedings/docs/1p595.pdf

� Webgraph – set of algorithms and a java 
implementation

� Fundamental goal – maintain node adjacency 
lists in memory

� For this, compressing the adjacency lists is 
the critical component

Adjacency lists

� The set of neighbors of a node

� Assume each URL represented by an integer

� Properties exploited in compression:

� Similarity (between lists)

� Locality (many links from a page go to 
“nearby” pages)

� Use gap encodings in sorted lists

� Distribution of gap values

Storage

� Boldi/Vigna get down to an average of 
~3 bits/link

� (URL to URL edge)

� For a 118M node web graph

� How?

Why is this remarkable?

Main ideas of Boldi/Vigna

� Consider lexicographically ordered list of all 
URLs, e.g., 

� www.stanford.edu/alchemy

� www.stanford.edu/biology

� www.stanford.edu/biology/plant

� www.stanford.edu/biology/plant/copyright

� www.stanford.edu/biology/plant/people

� www.stanford.edu/chemistry

Boldi/Vigna

� Each of these URLs has an adjacency list

� Main thesis: because of templates, the 
adjacency list of a node is similar to one of 
the 7 preceding URLs in the lexicographic 
ordering

� Express adjacency list in terms of one of 
these

� E.g., consider these adjacency lists

� 1, 2, 4, 8, 16, 32, 64

� 1, 4, 9, 16, 25, 36, 49, 64

� 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144

� 1, 4, 8, 16, 25, 36, 49, 64
Encode as (-2), remove 9, add 8

Why 7?



8

Resources

� www.robotstxt.org/wc/norobots.html

� www2002.org/CDROM/refereed/108/index.html

� www2004.org/proceedings/docs/1p595.pdf


